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Abstract. The development of automatic skull reconstruction meth-
ods has dramatically reduced the time and expense to repair skull
defects. In this study, an ensemble-learning-based method is proposed
for skull implant prediction. To overcome the potential overfit prob-
lem in 3-D volume analysis using deep learning, a set of 2-D defective
skull images is generated by slicing 3-D volumes along the X, Y, and
Z axes. We further introduce an RNN model in this method to com-
pensate for the loss of global skull information in the 2-D implant pre-
diction. Over the implant estimation problem in Task 1 of the AutoIm-
plant 2021 challenge, we observe a considerable performance boost
from our averaging ensemble strategy and noise removal filtering. The
codes for our method as well as our pretrained models is accessible
with https://github.com/YouJianFengXue/Cranial-implant-prediction-
by-learning-an-ensemble-of-slice-based-skull-completion-networks.
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1 Introduction

Defects on cranial bones are usually caused by physical damage or pathologi-
cal damage to the skulls. Cranioplasty is reconstructive surgery for such skull
injury repair. Traditionally, doctors put universal covers on the defective region.
However, this solution results in poor aesthetic outcomes and the gap between
a skull and implant may not be fully recovered [12]. Later, customized implants
were designed to improve the overall cranioplasty outcomes. Patient-specific skull
implant customization is a complex procedure with a relatively long waiting time
and requires a dedicated CAD software [1,2,7,10]. Recently, there has been an
increasing interest in artificial patient-specific implants (PSI). PSI uses computer-
aided algorithms andmachine learning to generate skull implants based onmedical
imaging of skull defects and is expected to reduce overall patient risk and surgery
time in the operating room [5]. A typical example of PSI is the AutoImplant 2020
challenge, where challenging participants present various data-driven solutions
based on triplet of cranial defects and corresponding skull implants. For instance,
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classical statistical models such as the statistical shape model (SSM) [8] were used
to estimate the skull shape for implant design. We notice that deep learning is still
themajor technique adopted in this challenge. Specifically, GenerativeAdversarial
Networks (GAN) [8], Variational Autoencoders (VAE) [13], U-Net [3,4,6,9] and its
variants, are the most popular generative models for skull completion and implant
estimation.

For the purpose of PSI, a defective skull is usually scanned into a 3-D skull
volume for downstream analysis. Intuitively, a 3-D U-Net is the candidate net-
work to process the data volume for defective skull recovery. However, this net-
work has many trainable parameters that require a large data set for model
training. For one thing, collecting an extensive skull defect data set is expensive.
For another, processing a batch of 3-D volumes involves data-intensive computa-
tion, which challenges computing resources, especially the memory of a graphic
card. We present a hardware-friendly solution to skull implant prediction to
address the above issues. Notably, we mitigate the data scarcity issue in model
training by slicing the skull volumes into 2-D planes along X, Y, and Z axes for
2-D implant prediction. Simultaneously, the 2-D data analysis and subsequent
model ensemble help to reduce the demand on computing hardware.

2 Methodology

2.1 Dataset

AutoImplant 2021 Challenge is an update of the AutoImplant 2020 Challenge.
Particularly for Task 1: cranial implant design for diverse synthetic defects on
aligned skulls, 570 cases that are distributed into 5 folders depending on defects’
locations are available for training and 100 samples in total (i.e. 20 in each folder)
for evaluation. For each training case, a triplet of defective skulls, corresponding
complete skull and implant are provided. All data samples are represented in
binary 512 × 512 × 512 volumes and saved in NRRD format.

2.2 Motivation

3-D skull volume analysis is challenging. Training a 3-D deep model such as the
3-D U-Net on limited samples is prone to overfit, harming models’ generalizabil-
ity on unseen data. In the AutoImplant 2020 Challenge, Shi et al. [11] present
a multi-axis slicing solution to address the issue. The method first exploits a
2D CNN network for skull implant estimation on each 2-D plane. Then the
obtained skull implant slices are combined to form the final 3-D implant. This
algorithm greatly mitigates the requirement of the number of data and com-
puting resources. However, it completely abandons the global information on a
skull volume in skull implant perdition. We argue that such global information,
especially the continuity between adjacent skull slices, is vital for cranial defect
recovery, and considering it in implant design would improve the final results.
In this regard, we design an LSTM model to account for the continuity between
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skull slices; furthermore, we adopt ensemble learning to fuse the outcome of our
RNN model and the CNN multiaxial slice network proposed by Shi et al. [11]
for final estimation.

2.3 Architecture

Figure 1 depicts the diagram of our networks. Given a 3-D defective skull volume,
we generate three sets of 2-D planes along the X, Y, and Z axes, respectively.
For each slice set, we train two 2-D networks for implant prediction. The CNN
model estimates the implant from a single slice, and the RNN neural network
takes five continuous slices as its input instead. Before the synthesis step, the
system generates six 3-D implant volumes from the parallel processing of the
three sets of skull slices. Finally, we combine all six outcomes together by an
averaging ensemble strategy. In addition, we design two computational-efficient
filters to remove isolated noise for the final output.

Specifically, to prepare 2-D images for downstream CNN and RNN models,
a skull volume sample is sliced along X, Y, and Z axis. To decrease the training
complexity, we remove the blank slices from the 2-D training sets. Here, blank
slices are defined as the images that don’t contain skull defect region or cranial
bones.

Fig. 1. Diagram of our skull implant estimation model. Given a 3-D defective skull
volume, we follow the multiaxial slice network proposed by Shi et al. [11] and slice
the volumes into 3 sets of 2-D planes. We design an ensemble solution that fuses the
CNN and RNN outcomes for final implant prediction. The specific neural network
architectures of the CNN and RNN models as well as the data flow in our RNN model
are presented in Fig. 2 and Fig. 3, respectively.
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Fig. 2. (a) The architecture of our 2D CNN network and (b) The architecture of our
2D RNN model.

Network Architecture and Training. Our solution comprises two deep
learning models: a CNN network that focuses on the processing of local infor-
mation within one slice and an RNN model that takes advantage of continuity
information among adjacent slices for skull implant prediction. Both CNN and
RNN networks are composed of an encoder and a decoder, as shown in Fig. 2.
The encoder projects the 2-D slices into a low-dimensional feature space, and
the decoder predicts the skull implant accordingly.
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Fig. 3. Data flow of the RNN model. A1 to A5 represent the 5 continuous skull slices
fed to the RNN model. The slice represented by B1 is the output of the RNN and is
treated as the correspond implant of A3 in this study.

Specifically, our CNN model follows the design of the multi-axis study. The
RNN model in this study adopts an LSTM module as the first layer above the
CNN net, targetting to address the continuity information between adjacent
slices for implant prediction. As demonstrated in Fig. 3, a 2-D skull implant is
estimated based on five consecutive 2-D slices in the RNN model. To train both
networks, we cast the 2-D skull implant estimation problem into a 2-D segmen-
tation problem, where the skull defect is treated as the targeted segmentation
region in a skull slice. Therefore, following the conventional segmentation setting,
the DICE loss is taken as the objective function for model optimization.

Dice loss = 1 − 2Σi |Pi ∗ Gi|+ ξ

Σi (Pi)
2 + Σj (Gj)

2 + ξ
, (1)

where Pi and Gi represent the implant prediction and corresponding ground
truth at the pixel i, respectively and ξ is a smooth factor to prevent the gradient
vanishing or explosion. In this study, we set ξ = 10−6.

When we train the models, we use the Adam optimizer with a learning rate of
0.00005 and a clipnorm of 1.0. Due to the limitation of the computing resource,
we set the batch size to be 1 during training.

Implant Synthesis. With the RNN and CNN models, we obtain six volumes
of skull implants, each consisting of all 2-D skull estimations along either X,
Y, or Z axes. Then we utilize an ensemble learning strategy to synthesize the
final skull implant from the six candidates. Specifically, in both RNN and CNN
models, each point in the volume is associated with a probability value indicating
the likelihood of a point belonging to the implant. We compare the sum of
the six likelihood values to a predefined threshold to determine if the point
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contributes to the final implant synthesis. In the solution proposed by Shi et
al. [11], since only three coarse skull implants are generated, 1.5 (i.e., 0.5 ×
3) is taken as the threshold to differentiate the defective region and cranial
bone in a 3D volume. However, we found this threshold inappropriate for our
problem, and the resulting skull estimations had many holes and debris. This
problem is especially severe when the defect is located on the front portion of
the skull. We present a typical example in Fig. 4(a) with a threshold of 1.5 in
our ensemble learning. To address this problem, we tried different values for the
averaging threshold and discovered that 1.0 is the optimal value in our method
(e.g., Fig. 4(c)). If the threshold is smaller than 1.0, the implant prediction has
large, noisy parties, as shown in Fig. 4(b)).

Fig. 4. Different threshold versus skull synthesis from the six coarse defect volumes.
(a) Threshold of 1.5 (b) threshold of 0.5, and (c) threshold of 1.0. The grey regions
correspond to defective skull and the red ones represent skull implants generated under
different thresholds.

Impurity Filter. In skull synthesis, we observe small, isolated artifacts outside
of skulls. Therefore, we design two simple filters to remove the isolated noise
in the predicted implants, one in the dimension of 7 × 7 × 7 and the other in
11×11×11. Please refer to the Experiment and Result section for the qualitative
and quantitative evaluation of the ensemble strategy and impurity filters.

3 Experimentation and Results

After training our networks using provided training samples, we submit the pre-
dicted implants to the challenge organizer and get feedback on the quantitative
evaluation. In this problem, 3 metrics including Hausdorff distance (HD) and dice
similarity score (DSC), and broader dice are used for performance assessment.
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Since our method has extensive overlap with the solution proposed by Shi
et al. [11], we downloaded their Github code, run their model on the Task 1
data in this challenge from scratch, and took it as our comparison baseline in
this study. The statistics over the test set are presented in Table 1, where all
numerical metrics are averaged over the five folders. The specific quantitative
evaluation results over the five folders are presented in the Appendix. As we
explained and reported in the Appendix, our submission of the baseline model
had unexpected errors on the test samples in the folder of random2. So we report
two sets of results for the baseline model, where the numerical values associated
with “’Baseline” in the first row are computed from the results of the first four
folders in Table 2 and the values in the second row marked as “’Baseline∗” are
averaged over evaluations across all 5 folders for your reference. The results in
Table 1 suggest that both our ensemble learning strategy and the impurity filters
improve the implant prediction performance. To visualize the performance boost
obtained by our ensemble strategy, we present two skull implant predictions in
Fig. 5 for comparison. Skull implants in the first row are predicted by the baseline
CNN network only, and the examples in the second row are generated after our
averaging ensemble strategy. From the figure, the implants in the first row are
incomplete. After our ensemble strategy to combine CNN and RNN results, the
implants in the second two are complete with more smooth surfaces.

Table 1. The comparison of DICE, border DICE, and HD95 among the baseline model,
ensemble learning model, and our final solutions.

HD95 DICE Border DICE

Baseline 3.09 0.77 0.81

Baseline∗ 16.74 0.64 0.68

CNN+RNN 7.47 0.80 0.85

CNN+RNN+Impurity filter 3.33 0.81 0.86

In the future, we would like to improve this method in the following two direc-
tions. First, this method includes two simple filters to remove small unwanted
parties from the synthesis implant. However, the two filters are incapable of
eliminating large impurities. We want to utilize connected component analysis
to remove isolated noise. Second, this study explores RNN quite naively (i.e.,
adding an LSTM layer on the top of a CNN model). We believe that training
an entirely new RNN model from scratch will improve the overall performance.
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Fig. 5. This figure shows the effect of ensemble learning. Skull implants in the first
row are predicted by the CNN network only and the examples in the second row are
generated by our method. The implants in the first row have holes on the surface. After
our ensemble strategy to combine CNN and RNN results together, the implants in the
second row are both improved with more smooth and complete surfaces.

4 Conclusions

This paper proposed a new skull implant design method by inpainting defec-
tive regions in 2-D skull slices. Since the networks take 2-D images/planes as
the input, the models had fewer trainable parameters and thus mitigated the
negative effects of a limited number of training samples. The quantitative and
qualitative results indicated that our averaging ensemble strategy over coarse
implants and the two purity filters helped improve the performance.

Appendix

In this challenge, we made several submissions for algorithm assessment and
improvement. The specific quantitative evaluation of our submissions that comes
from the challenge organizer are presented in this section. Specifically, Table 2
reports the performance of the baseline CNN model on the test samples in the
five folders. Note that our submission encountered unexpected errors over the
test samples in the folder of random2. So we particularly include this information
here for your reference or any further research and report the performance of
the baseline through two sets of numerical values in Table 1, where the values
in the first row are computed from the results of the first four folders and the
second line corresponds to the performance assessment over all 5 folders. We



Cranial Implant Prediction by Learning an Ensemble 103

believe that quantitative measurement in the first row of Table 1 reflects the
the performance of our baseline model. Similarly, Table 3 and Table 4 report the
specific numerical results for our later submissions. Slightly different from the
baseline model, the final results presented in Table 1 are averaged over the five
folders.

Table 2. The quantitative results of the baseline network from the challenge organizer.
Note that our submission had unexpected errors on the test samples in the folder of
random2. So we faithfully mark the error here with the star sign ∗ for your reference.

Bilateral Frontoorbital Parietotemporal Random1 Random2

DICE 0.74 0.76 0.80 0.79 0.11∗

Border DICE 0.80 0.79 0.86 0.82 0.10∗

HD95 4.06 2.84 2.44 3.04 71.32∗

Table 3. The quantitative results of the our CNN+RNN models from the challenge
organizer.

Bilateral Frontoorbital Parietotemporal Random1 Random2

DICE 0.79 0.80 0.83 0.80 0.79

Border DICE 0.84 0.82 0.88 0.84 0.84

HD95 10.56 8.70 2.64 7.60 7.85

Table 4. The quantitative evaluation of the entire solution from the challenge
organizer.

Bilateral Frontoorbital Parietotemporal Random1 Random2

DICE 0.80 0.81 0.84 0.80 0.80

Border DICE 0.85 0.83 0.89 0.86 0.85

HD95 3.87 2.70 2.63 3.87 3.60
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